
CS3485
Deep Learning for Computer Vision

Lec 10: Inception Net and what CNNs learn

Announcements

■ Quiz should be available on Canvas!

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Going Deeper with Convolutions

■ In the previous lectures we saw that the most straightforward
way of improving the performance of deep neural networks is
by increasing their depth.

■ However, this will result in
● The vanishing gradient problem,
● A dramatic increase in network parameters and use of

computational resources.

■ Besides ResNets, another architecture that overcame those
issues is called the Inception Network, from the paper “Going
Deeper with Convolutions” from 2015.

■ The network was named after the (great) movie of same name
and has the same “going deeper” premise.

https://arxiv.org/pdf/1409.4842v1.pdf

Why the Inception Network?

■ Important parts in the image for classification
can have extremely large variation in size.

■ For instance, an image with a dog can be
either of the options on the right. The area
where the dog is in is different in each image.

■ Because of this huge variation in the location of the information, choosing the right
kernel size for the convolution operation becomes tough:
● A larger kernel is preferred for information that is distributed more globally (like the first image

above)
● A smaller kernel is preferred for information that is distributed more locally (like the last one).

■ However, naively stacking large convolution operations (large kernels) is
computationally expensive.

■ The solution the InceptionNet found for those issues use branching networks that
generalize Residual Layers.

■ It recurs to a depth concatenation step, that takes the tensors coming from two different
branches and outputs a tensor with its channels concatenated. For example:

■ Note that the other dimensions (height and width) of the output tensors from NN1θ and
NN2θ have to be the same, so the concatenation operation can make sense.

Branching Networks

N
N

2
θ

N
N

1 θ

D
ep

th

C
on

ca
te

na
tio

n

z [NN1θ(z), NN2θ(z)]

■ In PyTorch, we can easily code up branching networks via the function torch.cat()
that concatenates two tensors.

■ An example of custom layer that uses concatenation is in the following example:

Branching Networks in PyTorch

import torch.nn as nn

class BranchingLayer(nn.Module):
 def __init__(self, in_ch, out_ch1, out_ch2, kernel_size):
 super().__init__()
 self.conv1 = nn.Conv2d(in_ch, out_ch1, kernel_size)
 self.relu1 = nn.ReLU()
 self.conv2 = nn.Conv2d(in_ch, out_ch2, kernel_size)
 self.relu2 = nn.ReLU()

 def forward(self, x):
 x1 = self.relu1(self.conv1(x))
 x2 = self.relu2(self.conv2(x))
 return torch.cat([x1, x2], dim=1) C

on
vL

ay
er

Re
LU

D
ep

th
 C

on
ca

t.

C
on

vL
ay

er

Re
LU

■ In PyTorch, we can easily code up branching networks via the function torch.cat()
that concatenates two tensors.

■ An example of custom layer that uses concatenation is in the following example:

Branching Networks in PyTorch

import torch.nn as nn

class BranchingLayer(nn.Module):
 def __init__(self, in_ch, out_ch1, out_ch2, kernel_size):
 super().__init__()
 self.conv1 = nn.Conv2d(in_ch, out_ch1, kernel_size)
 self.relu1 = nn.ReLU()
 self.conv2 = nn.Conv2d(in_ch, out_ch2, kernel_size)
 self.relu2 = nn.ReLU()

 def forward(self, x):
 x1 = self.relu1(self.conv1(x))
 x2 = self.relu2(self.conv2(x))
 return torch.cat([x1, x2], dim=1) C

on
vL

ay
er

Re
LU

D
ep

th
 C

on
ca

t.

C
on

vL
ay

er

Re
LU

The filters are in the
tensor’s second

dimension. Remember:
(N, C, H, W).

The Inception Module (Naive)

5×5
ConvLayer

3×3
ConvLayer

1×1
ConvLayer

3×3
Max-pool

Depth Concat.

■ Using branching networks, why not not have filters with multiple sizes operate on the
same level instead of stacking them up?

■ With that, we’d avoid the expensive staking and could also use global and local
ConvLayers on the same input.

■ The Inception Module (on the right)
was then created with that exact
purpose. It has:
● A more local set of filters in the 3×3

ConvLayer,
● A more global set in the 5×5 one.
● A Max-pool layer (which is global).

■ The 1×1 ConvLayer serves another
purpose.

The 1×1 Convolution

■ An important piece in the Inception
module is the 1×1 Convolution.

■ We use it when we want to reduce
the depth and keep the height ×
width of the feature maps.

■ This effect of channel down-sampling
is called “Dimensionality Reduction”.

■ For example, in PyTorch, we can
create such a module as following:

where the feature map’s depth
changes from in_ch to out_ch.

nn.Conv2d(in_ch, out_ch, kernel_size=1)

This is the execution of one 1×1
Convolution filter, usually you will

have more than just one filter.

The Inception Module (Improved)

1×1
ConvLayer

1×1
ConvLayer

3×3
Max-pool

Depth Concat.

5×5
ConvLayer

3×3
ConvLayer

1×1
ConvLayer

1×1
ConvLayer

■ This filter dimensionality reduction is
very handy for larger convolution
layers, such as the 5×5 ones, that
require many weights to be learned
for each filter.

■ It is so much so that Inception Net
uses many 1×1 convolutions on its
final inception module.

■ By reducing the number of channels
in each tensor before the “real”
ConvLayers, we can control the
network’ computational expense.

The Inception Network

Input

Output

OutputOutput

Legend

ConvLayer

Pool

Dense

Softmax

1×1 Conv

Concat

Batch Normalization

■ The InceptionNet (also called Inception v1 and GoogLeNet*) is
shown above.

■ During training, it has three classifiers, all with the same output
data. During testing, only the rightmost classifier is used.

■ This is done to train the inner layers and avoid vanishing gradients.

*The name is also an hommage to one of Deep Learning’s pioneers, Yann LeCun

The Inception Network

Input

Output

OutputOutput

Legend

ConvLayer

Pool

Dense

Softmax

1×1 Conv

Concat

Batch Normalization

■ The network uses 9 Inception modules in three different stages,
separated by max-pooling layers.

■ Furthermore, it has 2 “preprocessing” convolutional layer stages
to prepare the data for the upcoming inception modules.

■ In total it is 22 layers deep (27, including the pooling layers)

Versions of Inception and Performance

■ This network (Inception v1), when trained on ImageNet achieved a pretty good 9.2%
Top-5 error rate.

■ Inception v2 and Inception v3 were presented in the same paper and added a number of
tricks which increased v1’s accuracy and reduced the computational complexity.

■ Most of the important upgrades concerned the Inception Module itself, for example:
● In v2, they factorize the 5×5 convolution to two stacked 3×3 convolution operations to improve

computational speed. A 5×5 convolution is 2.78 times more expensive than a 3×3 convolution.
● Furthermore, they factorize n×n convolutions to a combination of 1×n and n×1 convolutions (a

3×3 conv. is equivalent to performing a 1×3 conv followed by a 3×1 one). This makes the overall
cost 33% cheaper.

● In v3, they included (factorized) 7×7 convolutions.

■ This lead to a 5.6% Top-5 error rate (for Inception v3) in ImageNet.
■ Furthermore, there is the Inception V4 and Inception-ResNet architectures.

Inception Network in PyTorch

■ Just like the VGG and ResNet architectures, PyTorch also makes the Inception v3
network available to use with pre-trained ImageNet weights.

■ This is done as follows (which analogous to VGG and ResNet):

from torchvision.models import inception_v3, Inception_V3_Weights
model = inception_v3(weights=Inception_V3_Weights.IMAGENET1K_V1)

 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 32, 149, 149] 864

 (...) (...) (...)
 InceptionE-303 [-1, 2048, 8, 8] 0
AdaptiveAvgPool2d-304 [-1, 2048, 1, 1] 0
 Dropout-305 [-1, 2048, 1, 1] 0
 Linear-306 [-1, 1000] 2,049,000
==
Total params: 27,161,264
Trainable params: 27,161,264
Non-trainable params: 0
---(...)

■ And the model’s summary:

from torchsummary import summary
summary(model.to(device), (3, 299, 299))

One should keep in mind
that the Inception Networks
were originally trained on
299×299 RGB images.

Relatively fewer
weights than the

VGGs

Exercise (In pairs)

■ In PyTorch, code up the naive
inception block on the right.
Remember that the tensor sizes at
the depth concatenation should be
the same. How would you do it for
each layer in this block? Call this
module InceptionModule. Hint: to
try out if your network “works”, try to
print its summary as you go:

5×5
ConvLayer

3×3
ConvLayer

1×1
ConvLayer

3×3
Max-pool

Filter Concat.

from torchsummary import summary

model = InceptionModule(1, 64, 128, 32)
summary(model.to(device),(1,28,28))

■ Here is the solution for the previous exercise:

■ Note that the ConvLayer step should always have a ReLU after the convolutional layer.

Solution

import torch.nn as nn
import torch
from torchsummary import summary
device = 'cuda' if torch.cuda.is_available()
 else 'cpu'

class ConvLayer(nn.Module):
 def __init__(self, in_channels,
 out_channels,
 **kwargs):
 super().__init__()
 self.relu = nn.ReLU()
 self.conv = nn.Conv2d(in_channels,
 out_channels,
 **kwargs)

 def forward(self, x):
 return self.relu(self.conv(x))

class InceptionModule(nn.Module):
 def __init__(self, in_ch, out_ch_1x1, out_ch_3x3, out_ch_5x5):
 super().__init__()
 self.branch1 = ConvLayer(in_ch, out_ch_1x1,
 kernel_size=1, padding=0)

 self.branch2 = ConvLayer(in_ch, out_ch_3x3,
 kernel_size=3, padding=1)

 self.branch3 = ConvLayer(in_ch, out_ch_5x5,
 kernel_size=5, padding=2)

 self.branch4 = nn.MaxPool2d(kernel_size=(3, 3),
 stride=1, padding=1)

 def forward(self, x):
 return torch.cat([self.branch1(x), self.branch2(x),
 self.branch3(x), self.branch4(x)], dim=1)

■ Finally, on the right, we have the
summary of the network:

Solution (Cont.)

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 64, 28, 28] 128
 ReLU-2 [-1, 64, 28, 28] 0
 ConvLayer-3 [-1, 64, 28, 28] 0
 Conv2d-4 [-1, 128, 28, 28] 1,280
 ReLU-5 [-1, 128, 28, 28] 0
 ConvLayer-6 [-1, 128, 28, 28] 0
 Conv2d-7 [-1, 32, 28, 28] 832
 ReLU-8 [-1, 32, 28, 28] 0
 ConvLayer-9 [-1, 32, 28, 28] 0
 MaxPool2d-10 [-1, 1, 28, 28] 0
==
Total params: 2,240
Trainable params: 2,240
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 4.03
Params size (MB): 0.01
Estimated Total Size (MB): 4.04
--

from torchsummary import summary

model = InceptionModule(1, 64, 128, 32)
summary(model.to(device),(1,28,28))

What do CNNs learn?

■ So far, we saw that Deep Convolutional Nets are very
good at learning visual features that improve image
classification.

■ But what do they learn after all? What is behind the
black box that is Deep Learning?

■ In fact, there is a growing sense that neural networks
need to be interpretable to humans, so it can be used
more efficiently and securely.

■ The field of Network Interpretability or Explainable AI
has formed in response to such concerns.

■ We’ll use Inception v1/GoogLeNet trained on ImageNet
as our running example to understand this learning.

CNN Model

■ A way to see what the network is learning is via feature visualization*,
i.e., we’ll visualize what features it in fact learned.

■ This means that we’ll:
● Choose a certain unit u in a certain layer we want to understand,
● Find the input image I that causes u to have maximum activation.

■ To find I, we use optimization: starting from a image with random pixel
values, change it via Gradient Descent so to maximize the output of u.

Understanding Feature Learning via Optimization

Step 1 Step 4 Step 48 Step 2048

*The images shown here were taken from this (very good) article on feature visualization in deep nets.

u

Output tensor of
a chosen layer

https://distill.pub/2017/feature-visualization/

■ We can use this optimization process to visualize what GoogLeNet learns at each stage.

■ To do so, we’ll divide up the network in 11 stages/blocks and show what images some of
the units in each stage most strongly react to.

■ This will give us a hint of what these filters (and blocks) learned when trained on the
ImageNet database.

What happens inside the Inception Network?

Input

Output

OutputOutput

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 1 and 2: Without any inception layer here
(just simple ConvLayers), it mostly reacts to

straight-ish meaningless patterns (like edges)

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 3a: This is the first inception block. It
shows some quite interesting textures that

are very localized.

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 3b: Textures start to become more
complex and larger/global and display shapes

that look more detailed.

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 4a: In this layer, which follows a
pooling step, we begin to see more

complex patterns, and even object parts.

BookshelvesDog eyesTextBirds

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 4b: You can begin to make out parts of
objects and visualizations start having more

context (like trees in front of sky and ground).

ArchitectureFluffy ropesTreesBilliards balls

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 4c: In this layer, you can find units
responding to specific objects like dogs on

leashes or wheels.

Palm TreesWheelsDogs on leashHouse

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

Block 4d: By this layer we find more
sophisticated concepts, like a particular kind

of animal snout or snake heads

Dog snoutsPrimatesSnake headsDishes

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

Block 4e: At this level, many neurons start to
react to multiple visually similar concepts (like
satellite dishes/sombreros, ice cream /bread).

Turtle shellsIce Cream/breadCat furSombreros

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 5a: after another pooling step,
visualizations become harder to interpret, since

visually similar concepts are getting mixed.

BallsBrass InstrumentsTraffic lightsCandles

■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 5b: In this layer visualizations become
mostly nonsensical collages. Neurons do not

seem to correspond to particularly meaningful
semantic ideas anymore.

■ In sum, as you go deeper into the network when training it, the layers learn more and
meaningful/less and less abstract image features.

■ This process is common in all deep convolutional nets, not just in the Inception.

Summary

Edges Textures Patterns Parts Objects

Going Deeper into the Network

■ We can also check which images in the dataset activate certain units (4b stage) the most:

■ Note how the units are specialized in certain image features/kinds.

Images that Activate the Units the Most

Optimized
Image

Maximum
activation

Slight positive
activation

Optimized
Image

Maximum
activation

Slight positive
activation

DeepDream

■ Instead of finding an image that maximally activates a unit of GoogLeNet, we can
optimize for a whole layer (which represents a certain abstraction level).

■ To understand this effect, we can also replace the initial random image by a real
image and let the optimization start there. This process is called DeepDream.

■ If we choose to optimize a lower layer (that is sensitive to basic features such as edges)
on a real image, it’ll insert strokes or ornament-like patterns in it, for example.

Original Image Different “Dreams” by optimizing different early channel in GoogLeNet

DeepDream

■ If we choose higher-level layers to optimize (which identify more sophisticated features
in images) complex features or even whole objects tend to emerge.

■ To make these features more explicit, we can then create a feedback loop: we optimize
a layer for an image and give the resulting image and back to the optimization.

■ Below, this process is repeated in a network trained on dog images. Note that it
“dogfies” everything it finds to the point of getting a lot of nonsense!

Original Image After 10 DeepDream Iterations After 50 DeepDream Iterations

DeepDream

■ Repeating this process on the later layers
of GoogLeNet trained on ImageNet,
DeepDream will approximate features
from the original image with features it
learned well. For example,
● Horizon lines tend to get filled with towers

and pagodas.
● Rocks and trees turn into buildings.
● Birds appear in images of leaves.

■ In this sense, DeepDream gives us a
qualitative sense of the level of
abstraction that a particular layer has
achieved in its understanding of images.

DeepDream

■ Besides learning about what deep CNNs learn, we can use
DeepDream to produce “exotic” image filters (and obviously
have tons of fun)!

Exercise (In pairs)

■ Implement the improved
Inception Module from
GoogLeNet (on the right) in
PyTorch. Feel free to use the
code in here as a base.

1×1
ConvLayer

1×1
ConvLayer

3×3
Max-pool

Depth Concat.

5×5
ConvLayer

3×3
ConvLayer

1×1
ConvLayer

1×1
ConvLayer

Exercise (In pairs)

■ Implement the improved
Inception Module from
GoogLeNet (on the right) in
PyTorch. Feel free to use the
code in here as a base.

1×1
ConvLayer

1×1
ConvLayer

Depth Concat.

5×5
ConvLayer

3×3
ConvLayer

