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Lec 10: Inception Net and what CNNs learn



Announcements

■ Quiz should be available on Canvas! 
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Going Deeper with Convolutions

■ In the previous lectures we saw that the most straightforward 
way of improving the performance of deep neural networks is 
by increasing their depth.

■ However, this will result in
● The vanishing gradient problem,
● A dramatic increase in network parameters and use of 

computational resources.

■ Besides ResNets, another architecture that overcame those 
issues is called the Inception Network, from the paper “Going 
Deeper with Convolutions” from 2015.

■ The network was named after the (great) movie of same name 
and has the same “going deeper” premise.

https://arxiv.org/pdf/1409.4842v1.pdf


Why the Inception Network?

■ Important parts in the image for classification 
can have extremely large variation in size.

■ For instance, an image with a dog can be 
either of the options on the right. The area 
where the dog is in is different in each image.

■ Because of this huge variation in the location of the information, choosing the right 
kernel size for the convolution operation becomes tough:
● A larger kernel is preferred for information that is distributed more globally (like the first image 

above)
● A smaller kernel is preferred for information that is distributed more locally (like the last one).

■ However, naively stacking large convolution operations (large kernels) is 
computationally expensive.



■ The solution the InceptionNet found for those issues use branching networks that 
generalize Residual Layers.

■ It recurs to a depth concatenation step, that takes the tensors coming from two different 
branches and outputs a tensor with its channels concatenated. For example:

■ Note that the other dimensions (height and width) of the output tensors from NN1θ and 
NN2θ have to be the same, so the concatenation operation can make sense.
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■ In PyTorch, we can easily code up branching networks via the function torch.cat() 
that concatenates two tensors.

■ An example of custom layer that uses concatenation is in the following example:

Branching Networks in PyTorch

import torch.nn as nn

class BranchingLayer(nn.Module):
   def __init__(self, in_ch, out_ch1, out_ch2, kernel_size):
       super().__init__()
       self.conv1 = nn.Conv2d(in_ch, out_ch1, kernel_size)
       self.relu1 = nn.ReLU()
       self.conv2 = nn.Conv2d(in_ch, out_ch2, kernel_size)
       self.relu2 = nn.ReLU()

   def forward(self, x):
       x1 = self.relu1(self.conv1(x))
       x2 = self.relu2(self.conv2(x))
       return torch.cat([x1, x2], dim=1) C
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The filters are in the 
tensor’s second 

dimension. Remember: 
(N, C, H, W). 



The Inception Module (Naive)

5×5
ConvLayer

3×3 
ConvLayer

1×1 
ConvLayer

3×3 
Max-pool

Depth Concat.

■ Using branching networks, why not not have filters with multiple sizes operate on the 
same level instead of stacking them up?

■ With that, we’d avoid the expensive staking and could also use global and local 
ConvLayers on the same input.

■ The Inception Module (on the right) 
was then created with that exact 
purpose. It has:
● A more local set of filters in the 3×3 

ConvLayer,
● A more global set in the 5×5 one.
● A Max-pool layer (which is global).

■ The 1×1 ConvLayer serves another 
purpose.



The 1×1 Convolution

■ An important piece in the Inception 
module is the 1×1 Convolution.

■ We use it when we want to reduce 
the depth and keep the height × 
width of the feature maps.

■ This effect of channel down-sampling 
is called “Dimensionality Reduction”.

■ For example, in PyTorch, we can 
create such a module as following:

where the feature map’s depth 
changes from in_ch to out_ch.

nn.Conv2d(in_ch, out_ch, kernel_size=1)

This is the execution of one 1×1 
Convolution filter, usually you will 

have more than just one filter. 



The Inception Module (Improved)
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1×1
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■ This filter dimensionality reduction is 
very handy for larger convolution 
layers, such as the 5×5 ones, that 
require many weights to be learned 
for each filter.

■ It is so much so that Inception Net 
uses many 1×1 convolutions on its 
final inception module.

■ By reducing the number of channels 
in each tensor before the “real” 
ConvLayers, we can control the 
network’ computational expense.



The Inception Network
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■ The InceptionNet (also called Inception v1 and GoogLeNet*) is 
shown above.

■ During training, it has three classifiers, all with the same output 
data. During testing, only the rightmost classifier is used.

■ This is done to train the inner layers and avoid vanishing gradients.

*The name is also an hommage to one of Deep Learning’s pioneers, Yann LeCun 



The Inception Network
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■ The network uses 9 Inception modules in three different stages, 
separated by max-pooling layers. 

■ Furthermore, it has 2 “preprocessing” convolutional layer stages 
to prepare the data for the upcoming inception modules.

■ In total it is 22 layers deep (27, including the pooling layers)



Versions of Inception and Performance

■ This network (Inception v1), when trained on ImageNet achieved a pretty good 9.2% 
Top-5 error rate. 

■ Inception v2 and Inception v3 were presented in the same paper and added a number of 
tricks which increased v1’s accuracy and reduced the computational complexity.

■ Most of the important upgrades concerned the Inception Module itself, for example:
● In v2, they factorize the 5×5 convolution to two stacked 3×3 convolution operations to improve 

computational speed. A 5×5 convolution is 2.78 times more expensive than a 3×3 convolution.
● Furthermore, they factorize n×n convolutions to a combination of 1×n and n×1 convolutions (a 

3×3 conv. is equivalent to performing a 1×3 conv followed by a 3×1 one). This makes the overall 
cost 33% cheaper.

● In v3, they included (factorized) 7×7 convolutions.

■ This lead to a 5.6% Top-5 error rate (for Inception v3) in ImageNet.
■ Furthermore, there is the Inception V4 and Inception-ResNet architectures.



Inception Network in PyTorch

■ Just like the VGG and ResNet architectures, PyTorch also makes the Inception v3 
network available to use with pre-trained ImageNet weights.

■ This is done as follows (which analogous to VGG and ResNet):

from torchvision.models import inception_v3, Inception_V3_Weights
model = inception_v3(weights=Inception_V3_Weights.IMAGENET1K_V1)

-----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 149, 149]             864

  (...)                      (...)           (...)
      InceptionE-303           [-1, 2048, 8, 8]               0
AdaptiveAvgPool2d-304          [-1, 2048, 1, 1]               0
         Dropout-305           [-1, 2048, 1, 1]               0
          Linear-306                 [-1, 1000]       2,049,000
================================================================
Total params: 27,161,264
Trainable params: 27,161,264
Non-trainable params: 0
-----------------------------------------------------------(...)

■ And the model’s summary:

from torchsummary import summary
summary(model.to(device), (3, 299, 299))

One should keep in mind 
that the Inception Networks 
were originally trained on 
299×299 RGB images.  

Relatively fewer 
weights than the 

VGGs



Exercise (In pairs)

■ In PyTorch, code up the naive 
inception block on the right. 
Remember that the tensor sizes at 
the depth concatenation should be 
the same. How would you do it for 
each layer in this block? Call this 
module InceptionModule. Hint: to 
try out if your network “works”, try to 
print its summary as you go:

5×5
ConvLayer

3×3 
ConvLayer

1×1 
ConvLayer

3×3 
Max-pool

Filter Concat.

from torchsummary import summary

model = InceptionModule(1, 64, 128, 32)
summary(model.to(device),(1,28,28))



■ Here is the solution for the previous exercise:

■ Note that the ConvLayer step should always have a ReLU after the convolutional layer.

Solution

import torch.nn as nn
import torch
from torchsummary import summary
device = 'cuda' if torch.cuda.is_available() 
                else 'cpu'

class ConvLayer(nn.Module):
   def __init__(self, in_channels, 
                      out_channels,
                      **kwargs):
       super().__init__()
       self.relu = nn.ReLU()
       self.conv = nn.Conv2d(in_channels, 
                             out_channels, 
                             **kwargs)

   def forward(self, x):
       return self.relu(self.conv(x))

class InceptionModule(nn.Module):
   def __init__(self, in_ch, out_ch_1x1, out_ch_3x3, out_ch_5x5):
       super().__init__()
       self.branch1 = ConvLayer(in_ch, out_ch_1x1,
                                kernel_size=1, padding=0)

       self.branch2 = ConvLayer(in_ch, out_ch_3x3,
                                kernel_size=3, padding=1)

       self.branch3 = ConvLayer(in_ch, out_ch_5x5,
                                kernel_size=5, padding=2)

       self.branch4 = nn.MaxPool2d(kernel_size=(3, 3),
                                   stride=1, padding=1)

   def forward(self, x):
       return torch.cat([self.branch1(x), self.branch2(x),
                         self.branch3(x), self.branch4(x)], dim=1)



■ Finally, on the right, we have the 
summary of the network: 

Solution (Cont.)

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 28, 28]             128
              ReLU-2           [-1, 64, 28, 28]               0
         ConvLayer-3           [-1, 64, 28, 28]               0
            Conv2d-4          [-1, 128, 28, 28]           1,280
              ReLU-5          [-1, 128, 28, 28]               0
         ConvLayer-6          [-1, 128, 28, 28]               0
            Conv2d-7           [-1, 32, 28, 28]             832
              ReLU-8           [-1, 32, 28, 28]               0
         ConvLayer-9           [-1, 32, 28, 28]               0
        MaxPool2d-10            [-1, 1, 28, 28]               0
================================================================
Total params: 2,240
Trainable params: 2,240
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 4.03
Params size (MB): 0.01
Estimated Total Size (MB): 4.04
----------------------------------------------------------------

from torchsummary import summary

model = InceptionModule(1, 64, 128, 32)
summary(model.to(device),(1,28,28))



What do CNNs learn?

■ So far, we saw that Deep Convolutional Nets are very 
good at learning visual features that improve image 
classification.

■ But what do they learn after all? What is behind the 
black box that is Deep Learning? 

■ In fact, there is a growing sense that neural networks 
need to be interpretable to humans, so it can be used 
more efficiently and securely.

■ The field of Network Interpretability or Explainable AI 
has formed in response to such concerns.

■ We’ll use Inception v1/GoogLeNet trained on ImageNet 
as our running example to understand this learning.

CNN Model 



■ A way to see what the network is learning is via feature visualization*, 
i.e., we’ll visualize what features it in fact learned. 

■ This means that we’ll: 
● Choose a certain unit u in a certain layer we want to understand,
● Find the input image I that causes u to have maximum activation.

■ To find I, we use optimization: starting from a image with random pixel 
values, change it via Gradient Descent so to maximize the output of u.

Understanding Feature Learning via Optimization

Step 1 Step 4 Step 48 Step 2048

*The images shown here were taken from this (very good) article on feature visualization in deep nets.

u

Output tensor of 
a chosen layer

https://distill.pub/2017/feature-visualization/


■ We can use this optimization process to visualize what GoogLeNet learns at each stage.

■ To do so, we’ll divide up the network in 11 stages/blocks and show what images some of 
the units in each stage most strongly react to.

■ This will give us a hint of what these filters (and blocks) learned when trained on the 
ImageNet database.

What happens inside the Inception Network?

Input

Output

OutputOutput



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 1 and 2: Without any inception layer here 
( just simple ConvLayers), it mostly reacts to 

straight-ish meaningless patterns (like edges)



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 3a: This is the first inception block.  It 
shows some quite interesting textures that 

are very localized. 



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

  Block 3b: Textures start to become more 
complex and larger/global and display shapes 

that look more detailed.



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

  Block 4a: In this layer, which follows a 
pooling step, we begin to see more 

complex patterns, and even object parts.

BookshelvesDog eyesTextBirds



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

  Block 4b: You can begin to make out parts of 
objects and visualizations start having more 

context (like trees in front of sky and ground).

ArchitectureFluffy ropesTreesBilliards balls



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

  Block 4c: In this layer, you can find units 
responding to specific objects like dogs on 

leashes or wheels. 

Palm TreesWheelsDogs on leashHouse



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

Block 4d: By this layer we find more 
sophisticated concepts, like a particular kind 

of animal snout or snake heads

Dog snoutsPrimatesSnake headsDishes



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

Block 4e: At this level, many neurons start to 
react to multiple visually similar concepts (like 
satellite dishes/sombreros, ice cream /bread).

Turtle shellsIce Cream/breadCat furSombreros



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

  Block 5a: after another pooling step,   
visualizations become harder to interpret, since 

visually similar concepts are getting mixed.

BallsBrass InstrumentsTraffic lightsCandles



■ We can now go block by block:

What happens inside the Inception Network?

Input

Output

OutputOutput

 Block 5b: In this layer visualizations become 
mostly nonsensical collages. Neurons do not 

seem to correspond to particularly meaningful 
semantic ideas anymore.



■ In sum, as you go deeper into the network when training it, the layers learn more and 
meaningful/less and less abstract image features.

■ This process is common in all deep convolutional nets, not just in the Inception. 

Summary

Edges Textures Patterns Parts Objects

Going Deeper into the Network



■ We can also check which images in the dataset activate certain units (4b stage) the most: 

■ Note how the units are specialized in certain image features/kinds.

Images that Activate the Units the Most

Optimized 
Image

Maximum 
activation 

Slight positive
activation 

Optimized 
Image

Maximum 
activation 

Slight positive
activation 



DeepDream

■ Instead of finding an image that maximally activates a unit of GoogLeNet, we can 
optimize for a whole layer (which represents a certain abstraction level).

■ To understand this effect, we can also replace the initial random image by a real 
image and let the optimization start there. This process is called DeepDream.

■ If we choose to optimize a lower layer (that is sensitive to basic features such as edges) 
on a real image, it’ll insert strokes or ornament-like patterns in it, for example.

Original Image Different “Dreams” by optimizing different early channel in GoogLeNet



DeepDream

■ If we choose higher-level layers to optimize (which identify more sophisticated features 
in images) complex features or even whole objects tend to emerge.

■ To make these features more explicit, we can then create a feedback loop: we optimize 
a layer for an image and give the resulting image and back to the optimization.

■ Below, this process is repeated in a network trained on dog images. Note that it 
“dogfies” everything it finds to the point of getting a lot of nonsense! 

Original Image After 10 DeepDream Iterations After 50 DeepDream Iterations



DeepDream

■ Repeating this process on the later layers 
of GoogLeNet trained on ImageNet, 
DeepDream will approximate features 
from the original image with features it 
learned well. For example, 
● Horizon lines tend to get filled with towers 

and pagodas. 
● Rocks and trees turn into buildings. 
● Birds appear in images of leaves.

■ In this sense, DeepDream gives us a 
qualitative sense of the level of 
abstraction that a particular layer has 
achieved in its understanding of images. 



DeepDream

■ Besides learning about what deep CNNs learn, we can use 
DeepDream to produce “exotic” image filters (and obviously 
have tons of fun)!



Exercise (In pairs)

■ Implement the improved 
Inception Module from 
GoogLeNet (on the right) in 
PyTorch. Feel free to use the 
code in here as a base.
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ConvLayer

1×1 
ConvLayer

3×3 
Max-pool

Depth Concat.

5×5
ConvLayer

3×3 
ConvLayer

1×1 
ConvLayer

1×1
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